1.2 Exploring Absolute Value

A Absolute Value The absolute value $\|x\|$ of a real number x is the distance between that number and the number 0 .	Ex 1. Evaluate the following expressions: a) $\|5\|$ b) $\|-5\|$ c) $\|0\|$ d) $\|+3\|$ e) $\|5-3\|$ f) $\|2-\|-3\|\|$ g) $\|1-2\|-\|2-1\|$ h) $\\|-7\|-\|-2\\|$
B Definition of Absolute Value The absolute value $\|x\|$ is defined by: $\|x\|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}$	Ex 2. Rewrite the following algebraic expression without the absolute value symbol \|
C Properties of Absolute Value The absolute value has the following properties: a) $\|a\|=\|-a\|$ b) $\|a\|=0 \Leftrightarrow a=0$ c) $\|a b\|=\|a \\| b\|$ d) $\left\|\frac{a}{b}\right\|=\frac{\|a\|}{\|b\|}$ e) $\|a+b\| \leq\|a\|+\|b\|$ (triangle inequality)	Ex 3. Use the properties of the absolute value to simplify: a) $\frac{\|-2 x\|}{\|-x\|}$ b) $\|x\|-\|-x\|$ c) $\left.\left\|\frac{-2 x}{3 y}\right\| \frac{-2 y}{3 x} \right\rvert\,$ d) $\|-3 x\|-\|-x\|-\|x\|$
D Distance between two numbers If $A(a)$ and $B(b)$ are two points on the number line corresponding to the numbers a and b respectively, the distance between the points can be expressed using the absolute value as: $d(A, B)=\|b-a\| .$	Ex 4. Solve for x. $\|x-3\|=\|5-x\|$
E Equations Consider $E(x)$ an algebraic expression containing the variable x. The equation $\|E(x)\|=a ; \quad a \geq 0$ can be solved by isolating x from the equation $E(x)= \pm a$.	Ex 5. For each case, solve for x. a) $\|x\|=3$ b) $\|2 x-1\|=3$ c) $\left\|2-\frac{2 x+1}{2 x-1}\right\|=1$

F Absolute Value Function

The absolute value function is defined by:

$$
y=f(x)=|x|
$$

Ex 6. Graph the absolute function $y=f(x)=|x|$ and describe its properties (symmetry, domain and range).

G Inequalities

The comparison operators are: < (less), \leq (less or equal to), $=$ (equal to), \neq (not equal to), $>$ (greater than), and \geq (greater or equal to).
The comparison operators $<$ (less), \leq (less or equal to), $>$ (greater than), and \geq (greater or equal to) are used to create inequalities.

H Interval Notation

The following notations are equivalent and represent sets of numbers:
$a<x \leq b$ (inequality notation)
$x \in[a, b)$ (interval notation)
$\{x \in R \mid a<x \leq b\}$ (set notation)

Similarly:
$x \geq a \Leftrightarrow x \in[a, \infty) \Leftrightarrow\{x \in R \mid x \geq a\}$

Ex 9. For each case, graph the solution set.
a) $|x|=2$
b) $|x-2|=3$
c) $|x|<2$

Ex 7. For each case, find the logical value (true or false) of the statement.
a) $-1<0$
b) $2 \leq 2$
c) $2=0$
d) $-1 \neq 1$
e) $-3>0$
f) $2 \geq-2$

Ex 8. Write the following sets of numbers given graphically using various notations.
a)

b)

Ex 10. Rewrite using the absolute value notation.

c)

d) $\|x-3\| \leq 2$	d)
e) $\|x\| \geq 2$	e)
f) $\|2-x\| \geq 3$	
I Transformations Given a parent function f, we can create new functions using transformations: $g(x)=a f(b(x-c))+d$ If $\|a\|>1$, there is a vertical stretch by a factor of $\|a\|$. If $\|a\|<1$, there is a vertical compression by a factor of $\|a\|$. If $a<0$, there is a reflection in the x axis. If $\|b\|>1$, there is a horizontal compression by a factor of $1 /\|b\|$. If $\|b\|<1$, there is a horizontal stretch by a factor of $1 /\|b\|$. If $b<0$, there is a reflection in the y axis. If $c \neq 0$, there is a horizontal translation (shift) to the right (if $c>0$) or to the left (if $c<0$). If $d \neq 0$, there is a vertical translation (shift) upward (if $d>0$) or downward (if $d<0$).	Ex 11. For each case, use transformations to graph. a) $y=\|x-3\|$ b) $y=\|x\|+2$ c) $y=\|x+2\|-3$ d) $y=-2\|3-x\|$ e) $y=4-\|3-2 x\|$

Reading: Nelson Textbook, Pages 14-15
Homework: Nelson Textbook, Page 16: \#1-10

